Cognitive Spectrum and its Security Issues

S. Arkoulis L. Kazatzopoulos C. Delakouridis G.F. Marias Dept. Of Informatics, Athens University of Economics & Business <u>arkoulistam@aueb.gr</u> lkazatzo@aueb.gr <u>kodelak@aueb.gr</u> <u>marias@aueb.gr</u>

Abstract

The current trend for opportunistic use of the licensed or licensed-exempt wireless spectrum with limited rules, or even without rules, introduces significant scientific and technical challenges for the Networks of the Future. Until now, for the realization of the cognitive radio paradigm, several spectrum sharing schemes have been proposed, such as centralized and distributed schemes, and cooperative or noncooperative spectrum sharing mechanisms. Unfortunately, some of the existing proposals for spectrum sharing and management introduce significant security leakages, putting into effect unfairness, unavailability, and selfishness, or even malicious behaviors. Additionally, the identification, recording and reporting of selfish, free-riders, malicious and anomalous actions by peers is still an open issue in the majority of the existing spectrum management schemes. This paper discusses and classifies the weak points and the vulnerabilities of the spectrum sharing mechanisms.

1. Introduction

Software defined and cognitive radios 0 [2] might be considered as the first step towards the realization of Noam's vision for "Open Spectrum Access" [3]. In Noam's vision, there is no license, and no up-front spectrum auction. Instead, spectrum bands are licensefree, all users those bands pay an access fee that is dynamically determined by the demand/supply conditions at the time, for instance by the existing congestion in the frequency bands, at time. Actually, due to the dramatic increase for access to the spectrum in the recent years, traditional spectrum policies have been reconsidered. Currently, dynamic spectrum access is proposed as a solution for the spectrum inefficiency. In this direction, DARPAs proposes the so-called NeXt Generation (xG) program which aims to implement a spectrum management framework based on cognitive radios [4][5]. The cognitive framework takes into account spectrum that is licensed, whereas primary users, i.e., those having rights for exclusive use of spectrum bands, release temporally some unused spectrum frequencies. These spectrum white spaces [2] are then shared opportunistically to non-primary users, so called secondary users. The sharing rules and the resolved dynamic spectrum allocation mainly focus on the avoidance of the interference conditions, mainly to primary users.

On the other hand, other spectrum regulation bodies, such as FCC, ECC, and the ITU World Radio Conference (WRC) have defined several unlicensed spectrum bands. For instance, the 2,4GHz Industrial Scientific and Medical (ISM) band was initially used for the deployment of the Radio LANs. U-NII systems, as defined by the FCC or WRC, operate using several license-free bands in the 5GHz spectrum. These bands are exploitable by Wireless Internet Service Providers (WISPs), that offer high data rates with much cheaper equipment and installation costs for providing Internet (or VPN) access services, voice and value added services, security provision, accounting and mobility management using WiMAX/WiFi technologies and standards. On the other hand, WISPs deployment disadvantages include limited coverage areas, lack of handover between hotspots, proven security and intradomain authentication, and primarily, bandwidth efficiency due to the inadequate regulation that applies for the unlicensed spectrum usage.

We anticipate that future WIPS's Access Points (APs), equipped with cognitive radios, will use and compete for multiple orthogonal channels concurrently to offer high-speed wireless access in the unlicensed bands. Relevant standards, such as the 802.22 standard for Wireless Regional Area Networks, indicate that this in not only a hypothesis. Such competition for orthogonal channels will softly involve the end-nodes that are connected with the APs, since they should employ fast channel discovery and AP association techniques; end-nodes should also report traffic demands and Quality of Service requirement to the APs. The overall objective of the employment of cognitive radios in the

978-0-7695-3333-9 /08 \$25.00 © 2008 IEEE DOI 10.1109/NGMAST.2008.102

licensed-free bands is to share or distribute the spectrum channels to APs which compete for short-term and ephemeral reservation, and at the same time achieve fairness and efficacy.

In this paper we will focus our research in the cooperative approach over the unlicensed spectrum; we assume that APs, irrespectively of whether the APs are operated by a single or multiple WISPs, are jointly performing cognitive actions. These actions include spectrum sensing, allocation, sharing, or release, and might be performed distributed [7] [10] [11] [12] [13] [14] [16] [17] [18] [19] or centralized [6] [8] [9]. The main challenge for any solution that aims to efficiently facilitate dynamicity and fairly distribute the unlicensed spectrum channels to cognitive APs is to include countermeasures that defeat unfairness and security leakages. Towards this direction, identification, recording and reporting of selfish, free-riders, malicious and anomalous behaviours by APs is still an open issue.

The majority of the centralized or distributed approaches assume that the participating nodes, i.e., APs, are altruistic and rational. Except the LocDef scheme in [20], TRIESTE [15] and the key-based principle that is used in [21], selfishness and malicious operation are not thoroughly discussed. The majority of the cognitive radio management mechanisms are unaware of the possible misbehaviors and attacks that might be present. To the best of our knowledge, it is not yet available in the literature a thorough study for the weaknesses that the centralized or distributed approaches experience due to selfish actions, misbehaviors of APs, and malicious attacks.

The scope of this paper is to identify, analyze and explain security weaknesses and vulnerabilities of cooperated dynamic and open spectrum access frameworks that could be exploited by offender APs to damage operation or affect the performance for their own motivation. The contributions of this paper are the reference security framework for the cognitive spectrum paradigm, and the impact to the enhancement of any future dynamic access spectrum policy or mechanism, when the security concerns are incorporated.

2. Motivation

According to the cognitive radio paradigm APs are installed in the same geographical areas. For this application scenario the use or share of the spectrum is opportunistic. Collocated and overlapping APs compete for allocating a number of spectrum channels, for the duration of the allocation, as well as for the power they permitted to use during transmission. The latter is relative to their position, since transmission power deals with the radius of the coverage area. Thus, spectrum is sensed, selected or shared with peer APs. If the portion of spectrum is licensed-free, then there is no need for un-licensed users to vacate the channel when a licensed user (or primary) is detected, or to detect in which subbands of the spectrum a licensed users is present during the sensing phase. This paradigm requires only rules for sensing and sharing the spectrum, and no AP is considered to have a predefined priority to use the spectrum (i.e., there are no primary users with extraordinary priority). A scenario where heterogeneous operators' APs might coexist in a geographical area is also feasible. Such APs might serve:

- Fixed or Wireless ISPs who profit from residential APs installations, providing a richer set of services to their subscribers
- Universities or municipalities hot-spot installations to provide free-of-charge wireless broadband services to students and people
- Individual and residential AP owners who share their bandwidth on an altruistic or on a for profit basis

Until now, several spectrum sharing schemes have been proposed, such as centralized and distributed schemes, and cooperative or non-cooperative spectrum sharing mechanisms using game theory results, or even incentives and auction approaches. Cognitive networks have received increased interest and relevant standards, such as the IEEE 802.22 standard, indicate that they are a fast maturing technology. Additionally, several international initiatives, such as the IST projects Drive¹, OverDRiVE² and OBAN³, as well as Nautilus⁴ and HD-MAC⁵.

In the centralized approach, a centralized entity assembles network status information, and efficiently allocates frequency channels to the APs in order to maximize a welfare utility. This approach does not scale well, since the central broker will eventually become a bottleneck in the system. Additionally it is notwell self-adapted to conditions where new APs are installed, or when multiple WISPs are share common deployment areas. On the other hand, being aware of the overall network status, the central utility provides global efficient allocations. In many proposals, a centralize server conducts and supervise a bidding proce-

¹ DRiVE Project Website:. http://www.ist-drive.org

² OverDRiVE Project Website: http://www.ist-overdrive.org

³ OBAN Project Website: http://www.ist-oban.org

⁴ Nautilus Project Website

http://www.cs.ucsb.edu/~htzheng/cognitive/nautilus.html ⁵ HD-MAC Project Website

http://www.cs.ucsb.edu/~htzheng/cognitive/HDMAC.html

dure. Centralized approaches are by default cooperative.

Distributed approaches are applicable for scenarios where APs are self-organized in small groups, probably isolated from other groups or fixed-infrastructures, and compete to maximize a utility objective. In the cooperative approach, this competition might be implemented via collaborative means, such as control channels, etiquette rules or explicit message exchange, etc (e.g., [11]). The goal is the accomplishment of the utility function of the group, agreed in advance through collaborative means. In the non-cooperative approach, APs compete with each other to maximize their own profit.

For the rest of our analysis it is crucial to identify what kind of anomalous behavior we might expect in cognitive radio scenarios.

- A *misbehaving AP* simply does not follows any common rule for sensing, sharing, and managing the spectrum
- A *selfish AP* aims to increase its utility function, mainly by allocating more spectrum bands, or larger time frames than the one it was assigned or agreed. The main objective is concentrated to the private income and not to the reduction of peer APs returns. APs follow rules that only work in their favor and ignore those rules that turn against them.
- A *cheat AP* aims to increase its utility function, and at the same time to decrease the profit of competitors. This strategy is followed in purpose, because there is no other way to increase private income other than to cheat others.
- A *malicious AP* violates on purpose the rules of the competition, without taking into account incomes and utility objectives

We classify the aforementioned classes as misbehaviors (the first one) and attacks (the last three). These abnormalities can only be realized if a threat exists; i.e., if one or more APs aim to exploit vulnerabilities and weakness of the rules and protocols.

3. Misbehaviors and Attacks

We present is this section our main results of weakness and threats in the cognitive paradigm. In the following analysis, we present the type of the misbehavior or attack, the class of the attack, the type of protocols it targets (i.e., distributed or centralized) and the architecture that it applies (if any).

1.	The AP claims that it did not receive spectrum coordina- tion or allocation signals.	Type: Misbehav- ing or Selfish Category: Distri- buted or Centra- lized
2.	The AP claims that it re- ceived corrupted spectrum coordination or allocation signals	Type: Misbehav- ing or Selfish Category: Distri- buted or Centra- lized
3.	Assume that sharing rules are based on a rich and poor infe- rence (e.g., high and low channel allocation of APs). APs exchange metrics infor- mation. Selfish APs might send false metrics claiming that they are poor. Thus, they will always claim higher priority during channel bid- ding.	Type: Selfish Category: Distri- buted or Centra- lized Source: [25]
4.	Assume that the rate of a channel is 'high' if a great number of APs bidding for its usage. APs and bid for 'high' rated channels. A group of M APs cooperate to cheat the overall system. In this scenario N APs (N is a subset of M) bid for low quality channels (channels with low bit rates). This will work as a honey-pot for the rest of the APs of the system. Thus, K=M-N APs will be able to bid for high quality channels without enough competition.	Type: Cheat Category: Distri- buted or Centra- lized Source: [25]
5.	Node A is aware of high quality channels. Whenever another node uses these channels, node A transmits at the same time to cause inter- ference. Thus, it downsizes the quality of the channel. As a result, it will be unlikely that other APs to bid over this low quality channel giving to node A much higher to allo- cate it.	Type: Cheat Category: Distri- buted or Centra- lized Source: [25]
6.	Assume that a threshold for the maximum number of channels a node can use is enforced. This threshold is related to the number of APs and available channels. A	Type: Selfish Category: Distri- buted or Centra- lized Source: [25]

				1 · · · · · · · · · · · · · · · · · · ·	
	group of M APs cooperate to			bility to be the winning node.	
	cheat the overall system. Just		11.	When a negotiation for spec-	Type: Cheat
	before an AP A bids for a			trum usage or bidding starts,	Category: Cen-
	channel, the remaining M-1			the AP A sends its offer and	tralized
	APs send dummy requests for			floods the network with	Source: [6]
	bidding pretending non exist-			dummy traffic. The centra-	
	ing users. Threshold will be			lized server will receive	
	decreased and APs have to			node's A demand or offer but	
	bid for fewer channels.			due to flooding the rest of the	
	Therefore node A will have			offers could not be delivered.	
	higher probability to use a			Therefore, node A increases	
	channel			his probability to be the win-	
7.	In the existence of a Centra-	Type: Cheat		ning node.	
	lized Server (CS), APs send	Category: Cen-	12.	Malicious APs try to spoof	Type: Cheat
	requests to CS with their	tralized		the identity of an AP user	Category: Cen-
	needs. CS allocates spectrum	Source: [6]		with large allocations, of an	tralized or distri-
	according to a policy and			AP that recently awarded	buted
	inform APs about the win-			access, or a winner of a bid-	Source: [26]
	ning nodes. A spoofing attack			ing or competition, in order	~~~ [20]
	might be launched. During			to gain access to radio.	
			12		True of Calfiel
	the bidding phase, a node A		13.	When a central authority or	Type: Selfish
	alters packages sent from			guard entity is in place, mali-	Category: Cen-
	competing APs to the CS, by			cious APs might try to spoof	tralized or distri-
	modifying their needs or of-			the identity of this entity to	buted
	fers. At the end of the bidding			mislead the central authority	Source: [15]
	procedure, the AP A will be			on judging their misbehavior	
	selected as the winner of the			or attack.	
	competition.		14.	When localization is used as	Type: Selfish
8.	Same as previous, but here	Type: Cheat		a proof of misbehavior, an	Category: Cen-
	the AP A highjack the packet	Category: Cen-		AP may alter his signal pat-	tralized or distri-
	send from the CS about the	tralized		terns (change antenna, power,	buted
	winning node, and alters the	Source: [6]		signal direction etc) in order	Source: [15]
		Source. [0]			Source. [15]
0	winning node in its favor.	T Cl (to import errors in the posi-	
9.	Same as previous, but here	Type: Cheat	1.5	tion estimation of the system.	T 0.16.1
	the AP A highjack the an-	Category: Cen-	15.	An AP might transmit noise	Type: Selfish
	nouncement packets send	tralized		(jamming) in order to down-	Category: Cen-
	from the CS to the nodes for	Source: [6]		grade the communication	tralized or distri-
	available bandwidth, and			quality of the neighbors.	buted
	decrease this value. There-			Thus, some of them may	
	fore, the rest of the nodes will			leave the frequency/channel.	
	produce demand and offers			This will free resources and	
	based on false input. As a			the AP will gain more spec-	
	result, node A will increase			trum.	
	its probability to gain access		16.	When spectrum sharing and	Type: Selfish
	rights.		10.		
10		Type: Salfish		scheduling is based on QoS	Category: Cen-
10.	When a negotiation for spec-	Type: Selfish		needs, an AP might claim	tralized or distri-
	trum usage or bidding starts,	Category: Cen-		more demands than the actual	buted
	an AP A might send its offer	tralized or distri-		current needs to allocate	Source: [9]
	and simultaneously flood the	buted		more spectrum	
	network with dummy traffic.	Source: [6]	17.	A malicious AP may inject	Type: Malicious
	The centralized server or the			fake control frames inside the	Category: Cen-
	peers will receive only A's			network. So, there may exist	tralized or distri-
	offer; due to the flooding			frames with erroneous head-	buted
	some of the other offers will			ers SSID), misleading info	Source: [9] [23]
	not be delivered. Therefore,			about neighbors or interfe-	[24]
	node A increases the proba-			about nerghoors of interfe-	[47]
1	noue ra mercases une proba-				

	rence levels or other useful	
	metrics. The network will	
	easily become unstable and	
	unfair in terms or resource	
	allocation.	
18.	An attacking AP may mimic	Type: Malicious
	another AP (it observes the	Category: Cen-
	radio transmission patterns	tralized or distri-
	and control information and	buted
	then it transmits using the	Source: [23]
	same patterns, in the same	500100.[25]
	bands). So, the victim may	
	become isolated, its band-	
	width requests will be use-	
	less, and its spectrum usage	
	will eventually become un-	
	fair. As a result, QoS agree-	
	ments may be broken. In the	
	worst case scenario, the at-	
	tacking AP may isolate a	
	legitimate AP or completely	
	overtake it.	
19.	An AP may sniff control	Type: Selfish
	packets and the usage reports	Category: Cen-
	of any other AP for spectrum	tralized or distri-
	needs. Based on these infor-	buted
	mation it can predict the fu-	Source: [23] [24]
	ture AP's spectrum needs and	
	their preference to particular	
	channels. After that it might	
	participate in an auction for a	
	particular spectrum. So, the	
	attacker AP does bids in	
	channels that will be needed	
	in the future by particular	
	APs in order to increase their	
20.	price and/or reputation.	Type Maligiana
<i>2</i> 0.	An attacker may sniff control	Type: Malicious
	packets, observe which chan-	Category: Cen-
	nels are in the verge of being	tralized or distri-
	allocated and transmit (jam-	buted
	ming) over them illegally.	Source: [23] [24]
	The applicants may be ob-	
	liged to bid for a new channel	
	and lose the paid price. The	
	network will soon become	
	unstable and the APs will	
	stop trusting the broker (cen-	
	tralized) or their neighbours	
	(distributed).	
	If an AP_1 uses a channel that	Type: Cheat
21	an AP_2 wants, a malicious	Category: Cen-
21.	an many wants, a manuluus	
21.		
21.	AP ₂ will cause interference to	tralized or distri-
21.	AP_2 will cause interference to AP_1 and make this AP to	buted
21.	AP ₂ will cause interference to	

	nel will become available to AP_1 and will be low-priced for brokering and bidding. If AP_1 win the next auction and allocate the channel, it will stop interfering.	
22.	Assume that the spectrum allocation is based on a num- ber of predefined policies. These may be stored in a central database (single- point-of-failure, easy to hack) or in a more distributed way, for security or robustness issues. A malicious AP may alter the contents of this data- base (centralized case) or spread false policy packets inside our network (distri- buted case) in order to mis- lead its neighbors or every- one who asks him a defined policy.	Type: Cheat Category: Cen- tralized or distri- buted Source: [23]

4. Existing solutions and relative work

To mitigate or avoid the aforementioned misbehaviors or attacks, countermeasures are essential. An interesting approach is presented in [20], where specialized wireless sensors are deployed to identify an attack where the adversary transmits signals whose characteristics emulate those of incumbent signals. The proposed LocDef scheme verifies whether a given signal is that of an incumbent transmitter by estimating its location and observing its signal characteristics. Even if this scheme assumes a reliable and secure sensor network, which is not always the case, LocDef can assist to avoid or mitigate some of the aforementioned drawbacks, but on the other hand APs might not cooperate fairly for location estimation (see item 14). On the other hand, trust relationships between entities have been proposed to avoid unauthorized nodes attacking the cognitive system. To build trust a key-based principle was used in [21].

In [22] several multi-channel jamming are reported and analyzed. The paper concentrates on how jamming attack amplifies their impact across multiple channels using a single radio and evaluates the efficacy of the jamming duration as well. Finally, the work in [23] is focused on the denial of service vulnerabilities and explores potential remedies that can be applied in the cognitive radio paradigm. To the best of our knowledge, in the literature there is no any other survey related with the weak points and the vulnerabilities of the cognitive spectrum sharing mechanisms.

5. Conclusions

When protocols, architectures and mechanisms are designed to efficiently distribute resources in the cognitive radio paradigm, misbehaving weaknesses and security vulnerabilities are not of primary concern. Thus, spectrum sensing, allocation, brokering, scheduling and management policies might be targets of potential malicious or selfish APs. The identification, mitigation or isolation of misbehaviors, threats and attacks in the cognitive radio paradigm is essential for guaranteeing fairness, achieving the agreed QoS metric and avoiding free-riding phenomena, whilst it guarantees channel resources availability to legitimate unlicensed users.

10. References

- J. Mitola, and G. Q. Maguire, "Cognitive radio: making software radios more personal", IEEE Pers. Commun. 6, 4 (Aug. 1999), 13–18.
- [2] S. Haykin, "Cognitive radio: Brain-empowered wireless communications", IEEE J. Select. Areas Commun. 23, 2 (Feb. 2005), 201–220.
- [3] E. Noam "Taking the Next Step Beyond Spectrum Auctions: Open Spectrum Access", IEEE Communications Magazine, Dec. 1995
- [4] DARPA XG WG, "The XG Architectural Framework V1.0", 2003.
- [5] DARPA XG Working Group, "The XG Vision Request for Comments", Version 2.0, 2004
- [6] O. Ileri, D. Samardzija, and N.B. Mandayam, "Demand responsive pricing and competitive spectrum allocation via spectrum server", IEEE DySPAN 2005
- [7] G. F. Marias, "Spectrum Scheduling and Brokering Based on QoS Demands of Competing WISPs", IEEE DySPAN 2005
- [8] C. Raman, R. D. Yates, and N. B. Mandayam, "Scheduling variable rate links via a spectrum server", IEEE DySPAN 2005
- [9] M. M. Buddhikot, P. Kolody, S. Miller, K. Ryan, and J. Evans, "DIMSUMNet: New directions in wireless networking using coordinated dynamic spectrum access", IEEE WoWMoM 2005
- [10] V. Brik, E. Rozner, S. Banarjee, and P. Bahl, "DSAP: a protocol for coordinated spectrum access", IEEE DyS-PAN 2005
- [11] X. Jing X. and D. Raychaudhuri, "Spectrum Coexistence of IEEE 802.11b and 802.16a Networks Using

Reactive and Proactive Etiquette Policies," ACM Journal Mob. Netw. Appl., 11(4):539-554, 2006.

- [12] Nautilus Project Website, available at: www.cs.ucsb.edu/~htzheng/cognitive/nautilus.html
- [13] SWAN: Self-organized Wireless Access Networks, available at www.pittsburgh.intelresearch.net/ ~kpapagia//SWAN/index.php
- [14] G. F. Marias, "A QoS-based auction protocol for coexisting WISPs", IEEE LANMAN 2005
- [15] W. Xu, P. Kamat, and W. Trappe "TRIESTE: A Trusted Radio Infrastructure for Enforcing SpecTrum Etiquettes", 1st IEEE Workshop on Networking Technologies for Software Defined Radio Networks, 2006
- [16] L. Cao, and H. Zheng, "Spectrum allocation in ad hoc networks via local bargaining", IEEE SECON 2005
- [17] A. Mishra, et al., "Distributed channel management in uncoordinated wireless environments" MobiCom 2006
- [18] J. Neel, and J. Reed, "Performance of distributed dynamic frequency selection schemes for interference reducing networks", IEEE Milcom 2006
- [19] J. Zhao, H. Zheng, and G. Yang, "Distributed coordination in dynamic spectrum allocation networks", IEEE DySPAN 2005
- [20] R. Chen, J.-M. Park, and J. H. Reed, "Defence against Primary User Emulation Attacks in Cognitive Radio Networks", IEEE JOSAIC, Vol. 26, No. 1, Jan 2008
- [21] P. Pawełczak, C. Guo, R. V. Prasad, and R. Hekmat, "Cluster-based spectrum sensing architecture for opportunistic spectrum access networks," IRCTR-S-004-07 Report, Feb. 2007
- [22] A. Sampath, H. Dai, H. Zheng, and B.Y. Zhao, "Multi-channel Jamming Attacks using Cognitive Radios", IEEE ICCCN 2007.
- [23] T. X. Brown, and A. Sethi "Potential Cognitive Radio Denial-of-Service Vulnerabilities and Protection Countermeasures: A Multi-dimensional Analysis and Assessment", 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CrownCom 2007
- [24] K. Bian and J.-M. Park, "MAC-Layer Misbehaviors in Multi-Hop Cognitive Radio Networks", 2006 Virginia Tech Symposium Posters
- [25] L. Cao and H. Zheng, "Distributed Rule-Regulated Spectrum Sharing," IEEE JOSAIC, vol. 26, No. 1, January 2008.
- [26] R. Chen and J. Park, "Ensuring Trustworthy Spectrum Sensing in Cognitive Radio Networks," 1st IEEE Workshop on Networking Technologies for Software Defined Radio Networks, Sept., 2006